UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Thermorheology and processing of polyethylene blends : macromolecular structure effects Velazquez, Omar Delgadillo

Abstract

Rheological and processing behavior of a number of linear low-density polyethylene(LLDPE)/low-density polyethylene (LDPE) blends was studied with emphasis on the effects of long chain branching. First, a linear low-density polyethylene (LL3001.32) was blended with four LDPE's having distinctly different molecular weights. At high LDPE weight fractions, DSC melting thermograms have shown three different polymer phases; two for the pure components and a third melting peak of co-crystals. Different rheological techniques were used to check the thermo rheological behavior of all blends in the melt state and the effect of long chain branching. It was found that all blends are miscible in the melt state at small LDPE concentrations. The elongational behavior of the blends was studied using a uniaxial extensional rheometer, SER. The blends exhibit strain hardening behavior at high rates of deformation even at LDPE concentrations as low as 1%, which suggests the strong effect of branching added by the LDPE component. On the other hand, shear rheology was found to be insensitive to detect addition of small levels of LDPE up to lwt%. The second set of blends prepared and studied consisted of two Ziegler-Natta LLDPE's (LL3001.32 and Dowlex2045G) and two metallocene LLDPE's(AffinityPL1840 and Exact 3128) blended with a single LDPE. In DSC melting thermograms, it was observed that blends with metallocence LLDPE's exhibit a single melting peak at all compositions; whereas the Ziegler-Natta blends exhibit three melting peaks at certain compositions. It was found also that the metallocene LLDPE's are miscible with the LDPE at all concentrations. On the other hand, the Ziegler-Natta LLDPE's were found to be miscible with LDPE only at small LDPE concentrations. The processing behavior of all blends with emphasis on the effects of long chain branches was also studied in capillary extrusion. The critical shear stresses for the onset of sharkskin and gross melt fracture are slightly delayed with the addition of LDPE into LLDPE. Furthermore, the amplitude of the oscillations in the stick-slip flow regime, known as oscillating melt fracture, were found to scale with the weight fraction of LDPE. Amounts as low as 1 wt% LDPE have a significant effect on the amplitude of pressure oscillations. These effects are clearly due to the presence of LCB. It is suggested that the magnitude of oscillations in the oscillating melt fracture flow regime can be used as a method capable to detect low levels of LCB. Finally, the sharkskin and stick-slip polymer extrusion instabilities of a linear low-density polyethylene were studied as a function of the type of die geometry. The critical wall shear stress for the onset of flow instabilities, the pressure and flow rate oscillations, and the effects of geometry and operating conditions on the instabilities are presented for a LLDPE. It was found that sharkskin and stick-slip instabilities were present in the capillary and slit extrusion. However, stick-slip and sharkskin in annular extrusion are absent at high ratios of the inside to outside diameter of the annular die. This observation also explains the absence of these instabilities in polymer processing operations such as film blowing. These phenomena are explained in terms of the surface to volume ratio of the extrudates.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International