Go to  Advanced Search

Assessing informative drop-out in models for repeated binary data

Show full item record

Files in this item

Files Size Format Description   View
ubc_2001-0024.pdf 6.198Mb Adobe Portable Document Format   View/Open
 
Title: Assessing informative drop-out in models for repeated binary data
Author: Er, Lee Shean
Degree Master of Science - MSc
Program Statistics
Copyright Date: 2001
Abstract: Drop-outs are a common problem in longitudinal studies. In terms of statistical models for the data, there are three types of drop-out mechanisms: drop-out occurring completely at random (CRD), drop-out occurring at random (RD) and informative drop-out (ID). The drop-out mechanism is classified as CRD if the drop-out mechanism is independent of the measurements; as RD if the drop-out mechanism depends only on the observed but not the unobserved measurements, and as ID if the drop-out mechanism depends on both the observed and unobserved measurements. CRD and RD are referred to as ignorable because the drop-out mechanism can be ignored for the purpose of making inferences about the observed measurements, while ID is non-ignorable. Analyses based on an assumption of ignorable drop-out, when in reality the drop-out mechanism is non-ignorable, can lead to misleading or biased results. Likelihood-based models for continuous and categorical longitudinal data subject to non-ignorable drop-out have been developed. In this thesis, we focus on exploring likelihood-based models for binary longitudinal data subject to informative drop-out. The two modelling approaches considered are a selection model proposed by Baker (1995) and a transition model proposed by Liu et al. (1999). We apply these models to a data set from a multiple sclerosis (MS) clinical trial. The aims of the analyses are to investigate whether there is an indication of informative drop-out in this data, and to assess the sentivity of inferences concerning the treatment effects to the underlying drop-out mechanisms. We do not attempt to provide a definitive analyses of the data set, but rather to explore a variety of models which incorporate informative drop-out.
URI: http://hdl.handle.net/2429/11271
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893