International Conference on Gas Hydrates (ICGH) (6th : 2008)

THERMAL PROPERTIES OF METHANE HYDRATE BY EXPERIMENT AND MODELING AND IMPACTS UPON TECHNOLOGY Warzinski, Robert P.; Gamwo, Isaac K.; Rosenbaum, Eilis J.; Myshakin, Evgeniy M.; Jiang, Hao; Jordan, Kenneth D.; English, Niall J.; Shaw, David W.

Abstract

Thermal properties of pure methane hydrate, under conditions similar to naturally occurring hydrate-bearing sediments being considered for potential production, have been determined both by a new experimental technique and by advanced molecular dynamics simulation (MDS). A novel single-sided, Transient Plane Source (TPS) technique has been developed and used to measure thermal conductivity and thermal diffusivity values of low-porosity methane hydrate formed in the laboratory. The experimental thermal conductivity data are closely matched by results from an equilibrium MDS method using in-plane polarization of the water molecules. MDS was also performed using a non-equilibrium model with a fully polarizable force field for water. The calculated thermal conductivity values from this latter approach were similar to the experimental data. The impact of thermal conductivity on gas production from a hydrate-bearing reservoir was also evaluated using the Tough+/Hydrate reservoir simulator (Revised version of ICGH paper 5646).

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International