Go to  Advanced Search

Near-minimum-time control of a robot manipulator

Show full item record

Files in this item

Files Size Format Description   View
ubc_2003-0437.pdf 6.496Mb Adobe Portable Document Format   View/Open
 
Title: Near-minimum-time control of a robot manipulator
Author: Tao, Fan
Degree Master of Applied Science - MASc
Program Mechanical Engineering
Copyright Date: 2003
Abstract: This thesis deals with the problem of minimum time control of a rigid robot manipulator with point-to-point motion subject to constraints on the control inputs. Due to the nonlinear and coupled dynamics of the robot manipulator, finding minimum time strategies is algorithmically difficult and computationally very intensive, even when the dynamic equations and parameters of the manipulator are precisely known. As a result, the practical applicability of the available methods currently is very limited. In this research, we assume the control inputs are always bang-bang and switch once. Using the Principle of Work and Energy, a simple and practical "zero-net-work" searching approach is proposed. The proposed method focuses on changes in the manipulator's kinetic energy during the time optimal motion, instead of concentrating on the system's state variables, as is usually done in conventional approaches. The "zero-net-work" method is used to develop the controllers for one-link manipulators, a 3-degree of freedom cylindrical manipulator and a two-degree of freedom revolute manipulator. The results show that if the structure of the exact minimum time control is bang-bang with a single switch, using the "zero-net-work" method we will get the exact minimum time solution. If the exact minimum time control has more than one switch, using the "zero-net-work" method we will get a near-minimum-time solution. The major advantages of the proposed method are that it does not require initial boundary value guesses and is computationally efficient.
URI: http://hdl.handle.net/2429/14293
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893