Go to  Advanced Search

Please note that starting Tuesday, October 13th we will be making a number of modifications to integrate cIRcle into the new UBC Library Open Collections service. This may result in some temporary outages next week. Please keep this in mind when planning your work schedule. Apologies for any inconvenience.

An ultra-low power SAR ADC

Show full item record

Files in this item

Files Size Format Description   View
ubc_2009_spring_chang_yin-ting.pdf 1.867Mb Adobe Portable Document Format   View/Open
Title: An ultra-low power SAR ADC
Author: Chang, Yin-Ting Melody
Degree: Master of Applied Science - MASc
Program: Electrical and Computer Engineering
Copyright Date: 2009
Issue Date: 2009-11-09
Publisher University of British Columbia
Abstract: Wireless sensor networks are used in variety of applications including environmental monitoring, industrial control, healthcare, home automation, traffic control, and temperature and pressure monitoring systems. Many one-time use wireless micro sensor applications require ultra-low-power devices due to the limited energy capacity and lifetime of their small-size battery. Many sensor nodes require an analog-to-digital converter (ADC) to convert the analog output of the sensor to digital for storage and/or further processing. In this work, an 8-bit ultra-low-power successive approximation register (SAR) ADC is presented that operates from a low power supply voltage of 1V. The circuit is implemented in a 0.18 μm bulk CMOS technology without using any 10W-VT devices. In terms of active components, this ADC requires one comparator, 18 D flip-flops, several switches, and one voltage doubler. The ADC achieves an effective number of bits of 7, while operating with a sampling rate of 100kS/s and consuming 1.4 μW from a 1 V supply.
Affiliation: Applied Science, Faculty of
URI: http://hdl.handle.net/2429/14703
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893