Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience. [ELK]

Design and analysis of active and passive decoupling capacitors for on-chip power supply noise management

Show full item record

Files in this item

Files Size Format Description   View
ubc_2009_fall_meng_xiongfei.pdf 4.298Mb Adobe Portable Document Format   View/Open
Title: Design and analysis of active and passive decoupling capacitors for on-chip power supply noise management
Author: Meng, Xiongfei
Degree Doctor of Philosophy - PhD
Program Electrical and Computer Engineering
Copyright Date: 2009
Publicly Available in cIRcle 2009-11-12
Abstract: On-chip decoupling capacitors (decaps) in the form of MOS transistors are widely used to reduce power supply noise in both standard-cell blocks and white spaces between blocks. This research provides guidelines for layouts of decaps that properly tradeoff high-frequency response, electrostatic discharge (ESD) reliability and gate tunneling leakage for use within standard-cell blocks in ASIC designs in 90nm and 65nm CMOS technologies. A simple but effective metric is developed to determine the optimal decap layout based on the frequency response. Novel active designs are also presented. If an JR-drop violation (hot spot) is found after the physical design is completed, it is usually difficult to implement a quick fix to the problem. In this dissertation, the use of an active decap in white-space areas as a drop-in replacement for passive decaps is investigated to provide noise reduction for these “hot-spot” problems found late in the design process. A modified active decap design is proposed for ASIC applications operating up to 1GHz, and the use of latch-based comparators provides a better power-delay trade-off. Measurement results from a test chip show that the noise reduction using active decaps improves as operating frequency increases, and provides between 10%-20% noise reduction at 200MHz-1GHz over its passive counterpart. The concept of active decap is further extended to achieve lower supply noise. It is found that an active decap with a stack height of three (i.e., number of pieces switching) provides the best noise reduction if the supply noise level is between 7%-14%, but a stack height of two is best if the noise level is between 14%-16%. In addition, a novel charge-borrowing decap circuit is introduced which outperforms all forms of active decaps for a fixed area in terms of removing local hot spots.
URI: http://hdl.handle.net/2429/14848
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893