Go to  Advanced Search

Particle and streamline numerical methods for conservative and reactive transport simulations in porous media

Show full item record

Files in this item

Files Size Format Description   View
ubc_2010_spring_herrera_paulo.pdf 10.87Mb Adobe Portable Document Format   View/Open
 
Title: Particle and streamline numerical methods for conservative and reactive transport simulations in porous media
Author: Herrera, Paulo Andres Ricci
Degree Doctor of Philosophy - PhD
Program Geological Engineering
Copyright Date: 2009
Publicly Available in cIRcle 2009-11-30
Abstract: Reactive transport modeling has become an important tool to study and understand the transport and fate of solutes in the subsurface. However, the accurate simulation of reactive transport represents a formidable challenge because of the characteristics of flow, transport and chemical reactions that govern the migration of solutes in geological formations. In particular, solute transport in natural porous media is advection-controlled and dispersion is higher in the direction of flow than in the transverse direction. Both characteristics create difficulties for traditional numerical schemes that result in numerical dispersion and/or spurious oscillations. While these errors can often be tolerated in conservative transport simulations, they can be amplified in presence of chemical reactions resulting in much larger errors or unstable solutions. In this thesis, new Lagrangian based methods to simulate conservative and reactive transport in porous media are investigated. First, the derivation of a new meshless approximation based on smoothed particle hydrodynamics (SPH) to simulate conservative multidimensional solute transport, including advection and anisotropic dispersion, is presented. Second, a hybrid scheme that combines some of the advantages of streamline-based simulations and meshless methods and that allows simulating longitudinal and transverse dispersion without requiring a background grid is also derived. The numerical properties of both methods are analyzed analytical and numerically. Furthermore, both formulations are compared with existing numerical techniques in a set of two- and three-dimensional benchmark problems. It is demonstrated that the proposed schemes provide accurate and efficient solutions of physical transport processes in heterogeneous porous media and overcome most of the issues in existing numerical formulations. The new methods have the potential to remove or minimize numerical dispersion and grid orientation effects and, in the case of the hybrid streamline method, also eliminate spurious oscillations even in presence of large longitudinal to transverse dispersivity ratios. Therefore, the results presented in this thesis confirm that the Lagrangian formulations of solute transport investigated here are viable and compelling alternatives to simulate reactive transport versus more standard numerical techniques.
URI: http://hdl.handle.net/2429/15967

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893