Go to  Advanced Search

Measurement and prediction of low-frequency noise in industrial workrooms

Show full item record

Files in this item

Files Size Format Description   View
ubc_2006-0132.pdf 14.08Mb Adobe Portable Document Format   View/Open
Title: Measurement and prediction of low-frequency noise in industrial workrooms
Author: Wong, Galen
Degree Master of Applied Science - MASc
Program Mechanical Engineering
Copyright Date: 2006
Abstract: Workers in industrial workrooms are routinely subjected to high levels of low-frequency noise (below 200 Hz) caused by machinery, ventilation systems, and other noise-generating sources. Although low-frequency noise is not usually considered to be damaging to hearing unless at very high, sustained levels, it may cause other problems, such as masking warning sounds, hindering communication, general annoyance and uneasiness, and nausea when accompanied by low-frequency vibrations. It is thus of interest to investigate and determine the characteristics of low-frequency sound propagation in such facilities for the purpose of better understanding how to control the sound using active noise control, since passive methods are often ineffective in controlling low-frequency sound. Prediction models can be used in helping to predict the benefits of and to optimize control measures. Two main factors alter the sound in workrooms at low frequencies - the boundary conditions of the room, and the obstacles in the room (the fittings) - and should be accounted for in prediction models. Thus, to investigate the propagation of low-frequency noise in workrooms, experiments were performed in three situations; a real workroom (empty and fitted), a scale-model workroom (empty and fitted), and a semi-free-field environment (a hemi-anechoic chamber — empty and fitted). Prediction models were employed to predict the sound fields in the measured configurations. Modal and image-phase prediction models were used to model the empty configuration, while a finite-element model was used to model the effects of fittings. It was shown that fittings significantly alter the low-frequency sound field in the real workroom with octave-band-limited noise. The scale-model test results showed relatively little influence of the fittings on the low-frequency sound field, with the same noise. The hemi-anechoic chamber results, without the effect of the room, indicate some small effects of the fittings. The room plays a larger role in affecting the sound field than do the fittings. The prediction results are discussed. It has proven difficult to accurately model the room and its boundary conditions with the modal and image-phase prediction models. Finite-element methods can be used to model very low-frequency effects, but memory limitations prevent modeling at higher frequencies.
URI: http://hdl.handle.net/2429/17712
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893