Go to  Advanced Search

The ratio, mean-of-the ratios and Horvitz-Thompson estimators under the continuous variable model

Show full item record

Files in this item

Files Size Format Description   View
UBC_1974_A4_6 C49_3.pdf 14.45Mb Adobe Portable Document Format   View/Open
 
Title: The ratio, mean-of-the ratios and Horvitz-Thompson estimators under the continuous variable model
Author: Chamwali, Anthony Alifa
Degree Master of Science in Business - MScB
Program Business Administration
Copyright Date: 1974
Abstract: This study investigates the performances of the ratio estimator, the mean-of-the-ratios estimator and the Horvitz-Thompson (HT) estimator under the continuous variable model of Cassel and Sarndal (1972a, 1972b, 1973). Under this model, the character, Y, which is of interest to the investigator is assumed to be related to an auxiliary variable, X, by Y(Xi) = θ(Xi + Z(Xi)) where ℇ(Zi | Xi) = 0; ∀Xi ℇ (0, ∞); ℇ(Zi² | Xi) = σ² (Xi) = k² Xi[sup g]; ℇ(ZiZj | XiXj) =0; (i ≠ j). It is assumed, in this paper, that X is gamma distributed over (0, ∞) with parameter r. The mean of Y is to be estimated, under the additional assumptions that the design function, P(x), is l) polynominal 2) exponential, i.e. [formulas are not included]. It is observed that for g = 0 or 1, the ratio estimator performs better than the other two. For g = 0, 1 or 2, and for a wider range of values of m or c, the mean-of-the-ratios estimator performs better than the HT estimator. When P(X) is polynominal, the III estimator is most efficient if the sampling design is approximately pps. The results compare well with those of other researchers under similar assumptions.
URI: http://hdl.handle.net/2429/18800
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893