Go to  Advanced Search

Y-box binding protein-1 (YB-1) is essential for the growth and survival of HER-2 over-expressing breast cancer cells

Show full item record

Files in this item

Files Size Format Description   View
ubc_2008_spring_lee_cathy.pdf 1.501Mb Adobe Portable Document Format   View/Open
Title: Y-box binding protein-1 (YB-1) is essential for the growth and survival of HER-2 over-expressing breast cancer cells
Author: Lee, Cathy
Degree Master of Science - MSc
Program Experimental Medicine
Copyright Date: 2007
Publicly Available in cIRcle 2007-12-11
Subject Keywords YB-1; breast cancer; HER-2
Abstract: The human epidermal growth factor receptor (HER-2) is over-expressed in 20-30% of breast carcinomas and is a prognostic marker for poor patient outcome. We previously identified the transcription/translation factor Y-box binding protein-1 (YB-1) to be a novel substrate of AKT which binds to epidermal growth factor receptor (EGFR) and HER-2 promoters once phosphorylated (Wu J et al. 2006). YB-1 is over-expressed in approximately 40% of breast cancers; its expression is strongly correlated with HER-2 and is associated with poor patient survival. In order to gain a deeper understanding of the functional role of YB-1 in HER-2 over-expressing breast cancer, we silenced the expression of this factor in BT474-m1 and MDA-MB-453 cells. The loss of YB-1 inhibited the growth of BT474-m1 and MDA-MB-453 cells in monolayer and/or in soft agar. Consistent with this, we found a decrease in the expression of YB-1 responsive gene egfr and/or her-2 in BT474-m1 and MDA-MB-453 cells, which could begin to explain how growth is promoted by this factor. Furthermore, loss of YB-1 expression induced apoptosis in BT474-m1 cells. Beyond its role in tumor growth, YB-1 is also strongly linked to drug resistance. We therefore addressed whether it could play a part in Herceptin sensitivity. Herceptin is currently being used to treat patients with HER-2 positive breast cancer; however, only 30% of the patients respond to the therapy and many of them develop resistance within the first year of treatment. Therefore, it is of utmost importance to understand the biology of HER-2 over-expressing breast cancer to develop novel therapies that can benefit more patients. First we established that Herceptin inhibited BT474-m1 cell growth in anchorage-independent conditions whereas MDA-MB-453 cells were resistant to this treatment. We subsequently demonstrated that knock-down of YB-1 increased sensitivity of BT474-m1 cells to Herceptin while MDA-MB-453 cells failed to respond to the combination treatment. The mechanism for Herceptin resistance in MDA-MB-453 cells still remains elusive and requires further investigation. Thus far, we conclude that YB-1 is needed for the growth and survival of HER-2 positive BT474-m1 and MDA-MB-453 breast cancer cells by inducing members of the HER family.
URI: http://hdl.handle.net/2429/220

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893