International Conference on Gas Hydrates (ICGH) (6th : 2008)

WIRE-LINE LOGGING ANALYSIS OF THE 2007 JOGMEC/NRCAN/AURORA MALLIK GAS HYDRATE PRODUCTION TEST WELL Fujii, Tetsuya; Takayama, Tokujiro; Nakamizu, Masaru; Yamamoto, Koji; Dallimore, Scott R.; Mwenifumbo, Jonathan; Wright, J. Frederick; Kurihara, Masanori; Sato, Akihiko; Al-Jubori, Ahmed

Abstract

In order to evaluate the productivity of methane hydrate (MH) by the depressurization method, Japan Oil, Gas and Metals National Corporation and Natural Resources Canada carried out a full scale production test in the Mallik field, Mackenzie Delta, Canada in April, 2007. An extensive wire-line logging program was conducted to evaluate reservoir properties, to determine production/water injection intervals, to evaluate cement bonding, and to interpret MH dissociation behavior throughout the production. New open hole wire-line logging tools such as MR Scanner, Rt Scanner and Sonic Scanner, and other advanced logging tools such as ECS (Elemental Capture Spectroscopy) were deployed to obtain precise data on the occurrence of MH, lithology, MH pore saturation, porosity and permeability. Perforation intervals of the production and water injection zones were selected using a multidisciplinary approach. Based on the results of geological interpretation and open hole logging analysis, we picked candidate test intervals considering lithology, MH pore saturation, initial effective permeability and absolute permeability. Reservoir layer models were constructed to allow for quick reservoir numerical simulations for several perforation scenarios. Using the results of well log analysis, reservoir numerical simulation, and consideration of operational constraints, a MH bearing formation from 1093 to 1105 mKB was selected for 2007 testing and three zones (1224-1230, 1238-1256, 1270-1274 mKB) were selected for injection of produced water. Three kinds of cased-hole logging, RST (Reservoir Saturation Tool), APS (Accelerator Porosity Sonde), and Sonic Scanner were carried out to evaluate physical property changes of MH bearing formation before/after the production test. Preliminary evaluation of RST-sigma suggested that MH bearing formation in the above perforation interval was almost selectively dissociated (sand produced) in lateral direction. Preliminary analysis using Sonic Scanner data, which has deeper depth of investigation than RST brought us additional information on MH dissociation front and dissociation behavior.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International