Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience.

Adjoint data assimilation in an open ocean barotropic quasi-geostrophic model

Show full item record

Files in this item

Files Size Format Description   View
ubc_1993_fall_bailey_david.pdf 2.405Mb Adobe Portable Document Format   View/Open
Title: Adjoint data assimilation in an open ocean barotropic quasi-geostrophic model
Author: Bailey, David A.
Degree Master of Science - MSc
Program Oceanography
Copyright Date: 1993
Abstract: A barotropic quasi-geostrophic ocean model with open boundaries was used to model a system of mid-ocean eddies. A simplified adjoint assimilation scheme was tested to see if sparse velocity data could be assimilated into the model at regular intervals. In between the times for data assimilation, the model was integrated forward in time with an Orlanski radiating boundary condition. This assimilation scheme was tested with several model runs, illustrating the changes arising from using different eddy sizes, different density of available data, and different numerical model parameters. This scheme was also compared with a bicubic interpolation scheme. During data assimilation, the resulting velocity field was generally more accurate than that obtained by interpolation alone. However, the Orlanski radiating boundary condition was not very effective in suppressing the growth of errors after data assimilation.
URI: http://hdl.handle.net/2429/2271
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893