Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience.

A queueing analysis of a multichannel, integrated voice and data communications system

Show full item record

Files in this item

Files Size Format Description   View
UBC_1982_A7 H34.pdf 4.398Mb Adobe Portable Document Format   View/Open
Title: A queueing analysis of a multichannel, integrated voice and data communications system
Author: Haller, Dennis Raymond
Degree Master of Applied Science - MASc
Program Electrical and Computer Engineering
Copyright Date: 1982
Abstract: A multichannel radio communications system is modeled as a multiserver queue, with two distinct customer classes representing voice and data messages. Data, the class with the shorter average length, is given non-preemptive priority over voice. The queueing model is analyzed as a continuous-time Markov chain with an infinite state space. The infinite set of steady state balance equations is truncated, then solved numerically using the linear programming (LP) technique of Kotiah. Upper and lower bounds are thereby obtained for the mean waiting times of each customer class, and the probability distribution for the number of messages in the system. Exploitation of the Markov chain's property of irreducibility improves the original algorithm by considerably reducing the computational cost. Simulation is used to help analyze the system and to validate the numerical results. The particular four-channel case of the queueing model is treated in detail; both simulation and numerical results are presented. The LP method produces excellent results when the data traffic intensity is less than about 0.1. This corresponds typically to the proportion of data messages being less than 90%. For other traffic mixtures, the upper bounds, especially for waiting times, are often too high to be of practical use. However, the lower bounds of the mean waiting times are of greater use; the simulation results show them to be reasonably good approximations to the true steady state values.
URI: http://hdl.handle.net/2429/23420
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893