Go to  Advanced Search

Control loop performance

Show full item record

Files in this item

Files Size Format Description   View
ubc_1993_spring_lynch_christopher.pdf 5.284Mb Adobe Portable Document Format   View/Open
 
Title: Control loop performance
Author: Lynch, Christopher
Degree Master of Applied Science - MASc
Program Electrical Engineering
Copyright Date: 1992
Abstract: Control loop monitoring provides the opportunity to maintain high process performance. In this thesis, the regulation performance of a process is monitored by examining the time delay, static input-output relation, and the minimum achievable output variance of the process. The time delay estimate is obtained from the Fixed Model Variable Regressor Estimator and the static input-output relation is estimated using the Adaptive Nonlinear Modeller. The minimum achievable output variance of the process is determined by modelling the closed loop noise transfer function by a Laguerre network and finding the Laguerre gains of the network using Recursive Extended Least Squares estimation. An extensive simulation study was performed to examine the operation, usefulness and limitations of the monitoring tools. These simulations confirmed the operation and benefit of the monitoring methods, and defined their limitations. The monitoring tools were applied to data generated by industrial processes. The successful application to industrial processes highlighted the benefits obtainable by control loop monitoring. Due to the ease of applying the monitoring tools and the valuable insight they provide, these monitoring tools should be applied to any process where regulation performance is a concern.
URI: http://hdl.handle.net/2429/2419
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893