Go to  Advanced Search

(2+1)-dimensional gravity over a two-holed torus, T²#T²

Show full item record

Files in this item

Files Size Format Description   View
ubc_1993_spring_newbury_peter.pdf 3.404Mb Adobe Portable Document Format   View/Open
Title: (2+1)-dimensional gravity over a two-holed torus, T²#T²
Author: Newbury, Peter R.
Degree Master of Science - MSc
Program Mathematics
Copyright Date: 1993
Abstract: Research into the relationships between General Relativity, topology, and gauge theory has, for the most part, produced abstract mathematical results. This thesis is an attempt to bring these powerful theories down to the level of explicit geometric examples. Much progress has recently been made in relating Chern-Simons gauge field theory to (2+1)-dimensional gravity over topologically non-trivial surfaces. Starting from the dreibe informalism, we reduce the Einstein action, a functional of geometric quantities, down to a functional only of the holonomies over flat compact surfaces, subject to topological constraints. We consider the specific examples of a torus T2, and then the two-holedtorus, T2#T2. Previous studies of the torus are based on the fact that the torus, and onlythe torus, can support a continuous, non-vanishing tangent vector field. The results we produce here, however, are applicable to all higher genus surfaces. We produce geometric models for both test surfaces and explicitly write down the holonomies, transformations in the Poincare group, ISO(2,1). The action over each surface is very nearly canonical, and we speculate on the phase space of dynamical variables. The classical result suggests the quantum mechanical version of the theory exists on curved space time.
URI: http://hdl.handle.net/2429/2462
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893