Go to  Advanced Search

Performance evaluation of friction damped braced steel frames under simulated earthquake loads

Show full item record

Files in this item

Files Size Format Description   View
UBC_1985_A7 F54.pdf 12.66Mb Adobe Portable Document Format   View/Open
Title: Performance evaluation of friction damped braced steel frames under simulated earthquake loads
Author: Filiatrault, André
Degree: Master of Applied Science - MASc
Program: Civil Engineering
Copyright Date: 1985
Subject Keywords Steel, Structural - Testing
Issue Date: 2010-05-27
Publisher University of British Columbia
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Abstract: This thesis presents the results obtained from qualification tests of a new friction damping system, which has been proposed in order to improve the response of Moment Resisting Frames and Braced Moment Resisting Frames during severe earthquakes. The system basically consists of a special inexpensive mechanism containing friction brake lining pads introduced at the intersection of frame cross-braces. The main objective is to study the performance of a 3 storey Friction Damped Braced Frame model under simulated earthquake loads. The main members of the test frame were chosen from available hot-rolled sections and the mass selected to provide the expected fundamental frequency of a three storey Moment Resisting Frame. The seismic testing was performed on an earthquake simulator table. The experimental results are compared with the findings of an inelastic time-history dynamic analysis. Two different computer models were used for this purpose. The first one is based on an equivalent hysteretic model and is only approximate, since it does not take into account the complete behaviour of the friction devices. A more refined computer model was then developed and the results from the two models are compared. It is found that the simpler approximate model overestimates the energy dissipated by the devices, but the inaccuracy is relatively small (10-20% in resulting member forces). To quantify the performance of the Friction Damped Braced Frame relative to conventional aseismic systems, an equivalent viscous damping study is made. Viscous damping is added to the Moment Resisting Frame and the Braced Moment Resisting Frame until their responses become similar to the response of the Friction Damped Braced Frame. The results show that for this purpose 38% of critical damping must be added to the Moment Resisting Frame and 12% to the Braced Moment Resisting Frame. The new system becomes more efficient as the intensity of the earthquake increases. The economical potential of the new damping system is investigated by designing a reduced size Friction Damped Braced Frame having response characteristics which are similar to those of conventional structural systems with heavier members. For the model frames studied, the results show that if the effects of wind, live and torsion loads are neglected, it is possible to reduce the members sizes of the Friction Damped Braced Frame by 47% and still achieve a superior performance under strong earthquake, in comparison to the seismic response of the two other conventional frames with their original, heavier members. The results, both analytical and experimental, clearly indicate the superior performance of the friction damped braced frame compared to conventional building systems. Even an earthquake record with a peak acceleration of 0.9 g causes no damage to the Friction Damped Braced Frame, while the Moment Resisting Frame and the Braced Moment Resisting frame undergo large inelastic deformations.
Affiliation: Applied Science, Faculty of
URI: http://hdl.handle.net/2429/25091
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893