UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The autocausticizing of sodium carbonate with colemanite Sozen, Gulgun

Abstract

Autocausticizing, a new method to regenerate sodium hydroxide from the sodium carbonate, is intended to replace the conventional Kraft Recovery System which uses calcium hydroxide produced in a lime kiln for this purpose. It is defined as the self-induced expulsion of carbon dioxide bound in the smelt by using certain amphoteric oxides. Thus autocausticizing can eliminate the need for a lime cycle and hence reduce the Kraft process capital and operating costs. The reactions between sodium carbonate and a number of amphoteric oxides have been reported in the literature. Patents have been issued on the use of titanium dioxide, iron oxide and sodium borates for this purpose. The sodium borates have the advantage of a high reaction rate, but are totally soluble and must be carried throughout the whole Kraft cycle. In this research colemanite (calcium borate) which is mined as a cheap mineral in California and in Turkey was studied as an autocausticizing agent. Since it is partially soluble and most likely can be recycled, it would eliminate the problems associated with the use of soluble borates. Experiments were performed both isothermally and under constant heating rate conditions. Isothermal studies were made with Ti0₂, alumina and colemanite to compare their performances as autocausticizing agents at 900°C and 1000°C for various reaction times in an electric furnace. The second group of experiments was made using a differential Chermogravimetric (TG) analyzer. In these experiments mixtures with 20 to 80 weight percent colemanite in sodium carbonate were heated at a constant heating rate of 10°K/min in the range of 190-1000°C. The results indicate that two reaction were involved. Above the stoichiometric colemanite concentration the colemanite and sodium carbonate had reacted completely by a temperature of about 700°C. Above that temperature the impurities in the colemanite appeared to catalyze the decomposition of sodium carbonate if the colemanite concentration was less than the stoichiometric amount needed. TG data were analyzed for the first and second reactions between the temperature ranges of 190-700°C and 700-1000°C respectively. Kinetic models were developed In terms of the reaction order, activation energy and frequency factor. The first reaction was found to be zero order on sodium carbonate concentration. The results also showed that the activation energy and frequency factor were functions of the colemanite concentration in the mixtures. As a result the rate was affected by the amount of colemanite used. The same was true for the second reaction except the reaction was first order. The concentrations predicted for the isothermal tests by the model were compared with the results of the isothermal study for various colemanite concentrations. Reasonable agreement was found except for the values at lower conversions, which might be due to the Increased importance of the diffusion of CO₂ from the mixtures in the case of Isothermal runs. It was also found that it is possible to obtain conversions as high as 85 percent with 40 percent colemanite in 20 minutes. Promising results were obtained from the recycle tests as well.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.