UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Investigations of highly conjugated macrocycles and polymers for aggregation and chemical sensing Boden, Britta Nicole

Abstract

With the goal of developing Schiff base macrocycles with conjugation extended over multiple aromatic rings, new phenanthrene and triphenylene-containing bis(salicylates) were synthesized. A convenient route to 3,6,9,10-tetraalkoxy-2,7-diiodophenanthrene was developed. This compound has been found to be a useful precursor for Pd-catalyzed cross-coupling reactions. Macrocycles were synthesized by Schiff base condensation of the phenanthrene and triphenylene precursors. Reaction of smaller phenanthrene and triphenylene bis(salicylates) with 1,2-dialkoxy-4,5-phenylenediamine afforded macrocycles in poor yield and purity, but formation of the macrocycle was confirmed by mass spectrometry. Condensation of larger phenanthrene ethynylene bis(salicylates) with phenylenediamines formed [3+3] Schiff base macrocycles in good yield and could be purified through recrystallization. These two large macrocycles were weakly luminescent, and showed decrease in intensity of emission in solution over time. Addition of nitroaromatic compounds to solutions of the macrocycles caused quenching of luminescence, but Stern-Volmer constants could not be determined. One of the macrocycles aggregates in solution and shows some order in the solid state. Association constants for self-assembly of this macrocycle in chloroform were determined, and aggregation was found to be enthalpically driven and entropically disfavoured. Both large macrocycles can complex metals, but low solubility prevents thorough characterization of the metal complexes. Phenanthrene-containing poly(phenyleneethynylene)s (PPEs) and poly(phenylenevinylene)s (PPVs) were synthesized via the Sonogashira and Heckcouplings, respectively. The PPEs had high molecular weight and both polymers were extremely luminescent with OF = 70% for the PPE and OF = 59% for the PPV. These polymers show potential for use in solar cells and nitroaromatic sensors . Dithienylsalphen monomers were made using 4-(2-thienyl)salicylaldehyde and 5-(2-thienyl)salicylaldehyde. These monomers were coordinated to Ni(II), Cu(II) and vanadyl, and tested for electropolymerization. Conjugated dithienylsalphen monomers polymerize poorly, while non-conjugated dithienylsalphen monomers form good films through electropolymerization. Ultraviolet-visible spectroscopy confirmed extended conjugation in N,N '-phenylenebis(4-(2-thienyl)salicylideneimine).

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International