UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Lead and strontium isotope study of five volcanic and intrusive rock suites and related mineral deposits, Vancouver Island, British Columbia Andrew, Anne

Abstract

Lead isotope compositions have been obtained from five major volcanic and intrusive rock suites and several ore deposits on Vancouver Island. Lead, uranium and thorium concentrations and strontium isotope ratios have been obtained for a subset of these samples. The rock suites examined are the Paleozoic Sicker Group, Triassic Karmutsen Formation, Jurassic Island Intrusions and Bonanza Group volcanic rocks, and the Eocene Catface intrusions. Isotope geochemistry of the Sicker Group is consistent with the interpretation that it formed as an island arc. Relatively high 207pb/204pb ratios indicate sediment involvement in the subduction process, which suggests that the Sicker Group formed close to a continent. Buttle Lake ore deposits display decreasingly radiogenic lead isotope ratios with time, suggesting that the associated magmas become increasingly primitive. This supports the hypothesis that these deposits formed during the establishment of rifting in a back-arc environment. Karmutsen Formation flood basalts display isotopic mixing between an ocean island-type mantle source and average crust. Isotopic evidence is used to support a Northern Hemisphere origin for these basalts. Mixing is apparent in the lead and strontium isotope signatures of the Island Intrusions and Bonanza Group volcanic rocks, between depleted mantle and crustal (possibly trench sediments) components. This is consistent with formation of these rocks in an island arc environment. Eocene Catface intrusions have relatively high 207pb/204pb indicating that crustal material was involved in their formation. There are two groups of plutons corresponding to an east belt and west belt classification. Galena from the Zeballos mining camp related to the Eocene Zeballos pluton indicates that the mineralization was derived from the pluton. Galena lead isotope data from Vancouver Island may be interpreted in a general way by comparison with data from deposits elsewhere of known age and origin. No single growth curve model can be applied. Lead isotope characteristics of Vancouver Island are clearly different from those of the North American craton, reflecting the oceanic affinities of this terrane. A new technique has been developed to compare 207pb/204pb ratios between samples with differing 206pb/204pb ratios. The procedure projects 207pb/204pb ratios along suitable isochrons until they intersect a reference value of 206pb/204pb. This technique can be used for interpreting lead isotope data from old terranes, in which lead and uranium may have undergone loss or gain, and if lead and uranium abundances have not been measured.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.