UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An engineering model for snow creep Olagne, Xavier

Abstract

Snowcovers on slopes densify and deform continuously throughout the winter. These slow, mainly viscous deformations are known as snow creep and this thesis presents an attempt to model them by idealizing snow as a non-Newtonian fluid, where the bulk and shear viscosities depend upon both stress and density. A three-dimensional constitutive law is developed, based largely on analogy with the flow behavior of ice and soil materials. The model, primarily intended for engineering applications (design of structures erected in a deep snowpack), is tested for creep pressures on long rigid obstacles. Data recorded on two experimental sites are compared with numerical results obtained by the finite element method. In addition to predicting pressures in good agreement with the ones measured in the field, the constitutive law is flexible enough to accommodate the stiffness variations encountered at different locations and hence presents some improvement over the linear formulation.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.