UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Effect of intercellular contact on radiation-induced DNA damage MacPhail, Susan Helen

Abstract

Chinese hamster V79-171B cells grown for about 24 hours in suspension culture display increased resistance to cell killing by ionizing radiation compared with cells grown as monolayers, an observation originally termed the "contact effect". More recently, development of that resistance was shown to be accompanied by changes in the conformation of the DNA which reduce its denaturation rate in high salt/weak alkali. These changes in DNA conformation, mediated by the cellular micro-environment, appear to be responsible for the contact effect. The conditions necessary for the development of the effect are not, however, completely understood. In particular, when cells grown as monolayers on petri plates are suspended in spinner culture flasks, their growth characteristics change in three distinct ways. First, cells in suspension no longer have a solid substrate, so they remain round. Second, after several hours, they begin to aggregate to form "spheroids", so that three-dimensional intercellular cell contact develops. Third, cells in the stirred suspension cultures are not subjected to high local concentrations of metabolic by-products or surrounded by a zone depleted of nutrients, as are cells in monolayer culture. The studies described here were designed to determine how each of these factors influence changes in DNA conformation, as assayed using the alkali unwinding technique. Our results indicated that a round shape may not be an essential requirement, since cells spread out on the surface of cytodex beads in suspension culture, and sparsely-seeded cells in monolayer culture demonstrated at least a partial contact effect. Three-dimensional intercellular contact does not always seem necessary for the development of the contact effect. Cells grown in a methyl cellulose matrix developed radioresistance, even though the cells formed only small clusters of less than five cells. Similarly, suspension culture cells which were prevented from aggregating by frequent exposure to trypsin, also developed the contact effect. There was no evidence that nutrient depletion plays a role in the failure of cells grown as monolayers to develop a contact effect. However, cells grown as spheroids in the presence of monolayer cells, or in monolayer cell-conditioned medium, did not display a full contact effect. This indicates a role for monolayer cell-produced factors (possibly extracellular matrix proteins) in preventing the development of the contact effect. We conclude that changes in DNA conformation and the increase in radiation resistance, seen in V79-171b cells grown as spheroids, are not the result of intercellular contact or round shape of the cells. This radioresistance appears to be the result of an absence of monolayer cell-produced factors which could control both cell shape and DNA conformation.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.