Go to  Advanced Search

Hypercube coloring and the structure of binary codes

Show full item record

Files in this item

Files Size Format Description   View
ubc_2008_fall_rix_james.pdf 716.1Kb Adobe Portable Document Format   View/Open
 
Title: Hypercube coloring and the structure of binary codes
Author: Rix, James Gregory
Degree Master of Science - MSc
Program Interdisciplinary Studies
Copyright Date: 2008
Publicly Available in cIRcle 2008-11-24
Subject Keywords Combinatorial object; k-dimensional hypercube; Color class; Binary codes structure; Chromatic number of the square of the cube; Graph coloring; Maximum cardinality; Chromatic number; Binary vectors
Abstract: A coloring of a graph is an assignment of colors to its vertices so that no two adjacent vertices are given the same color. The chromatic number of a graph is the least number of colors needed to color all of its vertices. Graph coloring problems can be applied to many real world applications, such as scheduling and register allocation. Computationally, the decision problem of whether a general graph is m-colorable is NP-complete for m ≥ 3. The graph studied in this thesis is a well-known combinatorial object, the k-dimensional hypercube, Qk. The hypercube itself is 2-colorable for all k; however, coloring the square of the cube is a much more interesting problem. This is the graph in which the vertices are binary vectors of length k, and two vertices are adjacent if and only if the Hamming distance between the two vectors is at most 2. Any color class in a coloring of Q2k is a binary (k;M, 3) code. This thesis will begin with an introduction to binary codes and their structure. One of the most fundamental combinatorial problems is finding optimal binary codes, that is, binary codes with the maximum cardinality satisfying a specified length and minimum distance. Many upper and lower bounds have been produced, and we will analyze and apply several of these. This leads to many interesting results about the chromatic number of the square of the cube. The smallest k for which the chromatic number of Q2k is unknown is k = 8; however, it can be determined that this value is either 13 or 14. Computational approaches to determine the chromatic number of Q28 were performed. We were unable to determine whether 13 or 14 is the true value; however, much valuable insight was learned about the structure of this graph and the computational difficulty that lies within. Since a 13-coloring of Q28 must have between 9 and 12 color classes being (8; 20; 3) binary codes, this led to a thorough investigation of the structure of such binary codes.
URI: http://hdl.handle.net/2429/2809

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893