Go to  Advanced Search

Seismic absorption estimation and compensation

Show full item record

Files in this item

Files Size Format Description   View
ubc_2009_spring_zhang_changjun.pdf 1.419Mb Adobe Portable Document Format   View/Open
 
Title: Seismic absorption estimation and compensation
Author: Zhang, Changjun
Degree Doctor of Philosophy - PhD
Program Geophysics
Copyright Date: 2008
Publicly Available in cIRcle 2008-12-01
Subject Keywords Seismic absorption compensation; Quality factor; Q estimation; Reservoir description; Migrated image
Abstract: As seismic waves travel through the earth, the visco-elasticity of the earth's medium will cause energy dissipation and waveform distortion. This phenomenon is referred to as seismic absorption or attenuation. The absorptive property of a medium can be described by a quality factor Q, which determines the energy decay and a velocity dispersion relationship. Four new ideas have been developed in this thesis to deal with the estimation and application of seismic absorption. By assuming that the amplitude spectrum of a seismic wavelet may be modeled by that of a Ricker wavelet, an analytical relation has been derived to estimate a quality factor from the seismic data peak frequency variation with time. This relation plays a central role in quality factor estimation problems. To estimate interval Q for reservoir description, a method called reflectivity guided seismic attenuation analysis is proposed. This method first estimates peak frequencies at a common midpoint location, then correlates the peak frequency with sparsely-distributed reflectivities, and finally calculates Q values from the peak frequencies at the reflectivity locations. The peak frequency is estimated from the prestack CMP gather using peak frequency variation with offset analysis which is similar to amplitude variation with offset analysis in implementation. The estimated Q section has the same layer boundaries of the acoustic impedance or other layer properties. Therefore, the seismic attenuation property obtained with the guide of reflectivity is easy to interpret for the purpose of reservoir description. To overcome the instability problem of conventional inverse Q filtering, Q compensation is formulated as a least-squares (LS) inverse problem based on statistical theory. The matrix of forward modeling is composed of time-variant wavelets. The LS de-absorption is solved by an iterative non-parametric approach. To compensate for absorption in migrated seismic sections, a refocusing technique is developed using non-stationary multi-dimensional deconvolution. A numerical method is introduced to calculate the blurring function in layered media, and a least squares inverse scheme is used to remove the blurring effect in order to refocus the migrated image. This refocusing process can be used as an alternative to regular migration with absorption compensation.
URI: http://hdl.handle.net/2429/2820

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893