Go to  Advanced Search

The effect of excess carbon in the anoxic basin of a biological pre-denitrification system for the treatment of landfill leachate

Show full item record

Files in this item

Files Size Format Description   View
UBC_1988_A7 C37.pdf 13.05Mb Adobe Portable Document Format   View/Open
Title: The effect of excess carbon in the anoxic basin of a biological pre-denitrification system for the treatment of landfill leachate
Author: Carley, Brian Neal
Degree Master of Applied Science - MASc
Program Civil Engineering
Copyright Date: 1988
Subject Keywords Bog ecology; Denitrification; Leaching; Factory and trade waste -- Leaching
Abstract: This study investigated the effect of excess carbon loading in the anoxic reactor on the nitrogen removal capacity of a biological pre-denitrification system for the treatment of a high ammonia leachate. The influent leachate was low in degradable organic carbon, thus an external carbon source was needed for denitrification requirements. Four different carbon sources were studied: methanol, glucose, acetate, and a waste brewer's yeast. The carbon loading was increased over the duration of the experimental period. The COD:NOx added to the anoxic reactor reached more than three times the carbon loading required to just achieve complete denitrification. All four carbon sources were found to support denitrification, but the glucose system showed erratic behaviour and ultimately failed after reaching a CODrNOx loading of about 23:1. The system using acetate appeared to require the least amount of COD:NOx (5.9:1) for complete denitrification, followed closely by methanol (6.2:1), then the yeast waste (8.5:1), and finally by glucose (9:1). Carbon breakthrough, the bleeding of carbon from the anoxic reactor into the aerobic reactor, was observed to occur just after complete denitrification was reached. The excess carbon did not appear to have any effect on denitrification, except in the case of the glucose system. The unit nitrification was found to decrease as the CODrNOx was increased, even though the ammonia removal remained at 100%. The decrease in nitrification, with respect to the COD:NOx, was most pronounced in the system that used methanol, and about equal in the other three systems. The cause of the decrease in nitrification is suspected to be due to increased ammonia assimilation by the heterotrophs rather than an inhibition of the nitrifiers. Nitrification ceased in the glucose system, but was restored within 12 days after the glucose addition was halted. The cause of the failure of the nitrogen removal process in the glucose system was not determined. Nitrite accumulation was observed in all the systems except the methanol system. The yeast waste system had nitrite accumulation in the aerobic reactor at C0D:N0x loadings over 25:1. Free ammonia inhibition of Nitrobacter is suspected to be the cause of aerobic nitrite buildup. The glucose and acetate systems had nitrite buildup in the anoxic reactor until complete denitrification was achieved. Facultative anaerobic bacteria are suspected of causing this nitrite accumulation. This theory was supported by observations in the glucose system, such as low anoxic pH; this may have been due to volatile fatty acids produced from fermentation.
URI: http://hdl.handle.net/2429/28371
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893