UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Sensitivity and uncertainty analysis of subsurface drainage design Wu, Guangxi

Abstract

Literature on subsurface drainage theories, determination of drainage parameters, and analysis approaches of uncertainty was reviewed. Sensitivity analysis was carried out on drain spacing equations for steady state and nonsteady state, in homogeneous soils and in layered soils. It was found that drain spacing is very sensitive to the hydraulic conductivity, the drainage coefficient, and the design midspan water table height. Spacing is not sensitive to the depth of the impermeable layer and the drain radius. In transient state, spacing is extremely sensitive to the midspan water table heights if the water table fall is relatively small. In that case steady state theory will yield more reliable results and its use is recommended. Drain spacing is usually more sensitive to the hydraulic conductivity of the soil below the drains than to that of the soil above the drains. Therefore, it is desirable to take samples from deeper soil when measuring hydraulic conductivity. A new spacing formula was developed for two-layered soils and a special case of three-layered soils with drains at the interface of the top two layers. This equation was compared with the Kirkham equation. The new formula yields spacings close to the Kirkham equation if the hydraulic conductivity of the soil above the drains is relatively small; otherwise, it tends to give more accurate results. First and second order analysis methods were employed to analyze parameter uncertainty in subsurface drainage design. It was found that conventional design methods based on a deterministic framework may result in inadequate spacing due to the uncertainty involved. Uncertainty may be incorporated into practical design by using the simple equations and graphs presented in this research; the procedure was illustrated through an example. Conclusions were drawn from the present study and recommendations were made for future research.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.