Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience. [CYPRESS]

Dynamic soil-structure interaction : theory and verification

Show full item record

Files in this item

Files Size Format Description   View
UBC_1988_A1 Y63.pdf 12.09Mb Adobe Portable Document Format   View/Open
Title: Dynamic soil-structure interaction : theory and verification
Author: Yogendrakumar, Muthucumarasamy
Degree: Doctor of Philosophy - PhD
Program: Civil Engineering
Copyright Date: 1988
Subject Keywords Soil structure;Embankments
Issue Date: 2010-10-16
Publisher University of British Columbia
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Abstract: A nonlinear effective stress method of analysis for determining the static and dynamic response of 2-D embankments and soil-structure interaction systems is presented. The method of analysis is incorporated in the computer program TARA-3. The constitutive model in TARA-3 is expressed as a sum of a shear stress model and a normal stress model. The behavior in shear is assumed to be nonlinear and hysteretic, exhibiting Masing behavior under unloading and reloading. The response of the soil to uniform all round pressure is assumed to nonlinearly elastic and dependent on the mean normal effective stresses. The porewater pressures required in the dynamic effective stress method of analysis are obtained by the Martin-Finn-Seed porewater pressure generation model modified to include the effect of initial static shear. During dynamic analysis, the effective stress regime and consequently the soil properties are modified for the effect of seismically induced porewater pressures. A very attractive feature of TARA-3 is that all the parameters required for an analysis may be obtained from conventional geotechnical engineering tests either in-situ or in laboratory. A novel feature of the program is that the dynamic analysis can be conducted starting from the static stress-strain condition which leads to accumulating permanent deformations in the direction of the smallest residual resistance to deformation. The program can also start the dynamic analysis from a zero stress-zero strain condition as is done conventionally in engineering practice. The program includes an energy transmitting base and lateral energy transmitting boundaries to simulate the radiation of energy which occurs in the field. The program predicts accelerations, porewater pressures, instantaneous dynamic deformations, permanent deformations due to the hysteretic stress-strain response, deformations due to gravity acting on the softening soil and deformations due to consolidation as the seismic porewater pressures dissipate. The capability of TARA-3 to model the response of soil structures and soil-structure interaction systems during earthquakes has been validated using data from simulated earthquake tests on a variety of centrifuged models conducted on the large geotechnical centrifuge at Cambridge University in the United Kingdom. The data base includes acceleration time histories, porewater pressure time histories and deformations at many locations within the models. The program was able to successfully simulate acceleration and porewater pressure time histories and residual deformations in the models. The validation program suggests that TARA-3 is an efficient and reliable program for the nonlinear effective stress analysis of many important problems in geotechnical engineering for which 2-D plane strain representation is adequate.
Affiliation: Applied Science, Faculty of
URI: http://hdl.handle.net/2429/29222
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893