Go to  Advanced Search

Linbo₃ Y-branch optical modul

Show full item record

Files in this item

Files Size Format Description   View
UBC_1991_A7 L34.pdf 4.833Mb Adobe Portable Document Format   View/Open
 
Title: Linbo₃ Y-branch optical modul
Author: Lai, Winnie Chelsea
Degree Master of Applied Science - MASc
Program Electrical and Computer Engineering
Copyright Date: 1991
Abstract: Y-branch optical modulators are potentially very useful in optical communications because of their non-interferometric nature, making them easier to fabricate and to control than other types of electro-optic switches. They can be used as digital optical switches, time division multiplexers, or in conjunction with a resonator as its electrode to form a high speed optical commutator switch. The main problem with Y-branch modulators to date is that they all have very small branch angles, e.g., less than 0.2°, and hence long electrodes, thereby increasing the device capacitance and reducing the switching speed. By studying a Y-branch optical modulator numerically and experimentally, our objective is to design a Y-branch modulator which has a short electrode and still offers high on/off ratios and high percentage guided power. By using the effective index method along with the 2-D split-step finite difference beam propagation method, a z-cut titanium indiffused lithium niobate Y-branch modulator is simulated for a free space wavelength of 632.8 nm. The parameters varied in the simulations are: maximum refractive index change at the surface of the waveguide, electrode length, branch angle, and applied modulating voltage. Based on the simulation results, a maximum refractive index change of 0.0042 and an electrode length of two-horn-length are used to provide good on/off ratios and percentage guided power while keeping the electrode short. Since the on/off ratios increase with branch angle while the percentage guided power decreases with branch angle, a range of angles between 1.0° and 1.5° are found to provide the preferred operating characteristics. Y-branch modulators with branch angles ranging from 0.5° to 3.0°, and with electrodes of two-horn-length as well as three-horn-length, are fabricated. The fabrication parameters are as specified in the simulations, e.g. waveguides are formed by diffusing 4 µm wide titanium strips at 1050 °C for 6 hours. Previous fabrication problems such as dust accumulation and surface guiding are alleviated. The devices are tested by launching polarized light from a helium neon laser into a polarization-maintaining fibre and then endfire coupling the light into the fundamental TM-like mode of the waveguides. The on/off ratios and percentage guided powers are measured for both devices with two-horn-length and three-horn-length electrodes. These measured results generally compare well with the theoretical values and the behaviours of all the Y-branch are as predicted. Using the 1.5° Y-branch with the two-horn-length electrode (300 µm) as an example, the experimental on/off ratio is 40:1 with a 66% guided power at 75 V while the theoretical values are 44:1 with 62% guided power. We have demonstrated that a Y-branch electro-optic modulator with high on/off ratios and percentage guided power can be realized with short electrodes.
URI: http://hdl.handle.net/2429/29993
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893