UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Electron acceleration in a plasma wave above a laser irradiated grating Laberge, Michel

Abstract

The acceleration of electrons in a laser produced plasma wave was studied experimentally. A plasma with a modulated density was produced by illuminating a grating with a ruby laser at an intensity of 10¹⁰ W/cm². The plasma expanding above the surface of the grating was diagnosed using interferometry, shadowgraphy and Raman-Nath scattering. The plasma density was found to be modulated with an amplitude of [formula omitted]/n=8% for grating spacings ranging from 6 to 35 µm. A CO₂ laser of intensity 7xlO¹¹ W/cm2 then irradiated this modulated plasma and generated plasma waves. The phase speeds of the plasma waves are v[formula omitted] = ±[formula omitted]k[formula omitted], where k[formula omitted] is the wavenumber of the grating and [formula omitted] is the frequency of the CO₂ laser. Electrons were injected at an energy of 25 keV in one of the plasma waves. In order for the phase speed of the wave to synchronize with the accelerating electrons, a grating with constantly increasing line spacing was used. No conclusive evidence of electron acceleration was obtained, even after the injection energy was increased to 92 keV. This lack of evidence was the result of a large electric field perpendicular to the surface of the grating, which deflected the electrons onto the grating. This detrimental electric field is produced when fast electrons are emitted by the plasma and leave it positively charged. At the low laser intensity used in this experiment, the origin of these electrons could not be identified. Some techniques to remedy this difficulty are proposed.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.