Go to  Advanced Search

Oxidations using dioxoruthenium (VI)-porphyrin complexes ; and studies on some organoruthenium-porphyrin species

Show full item record

Files in this item

Files Size Format Description   View
UBC_1990_A1 R34.pdf 6.789Mb Adobe Portable Document Format   View/Open
 
Title: Oxidations using dioxoruthenium (VI)-porphyrin complexes ; and studies on some organoruthenium-porphyrin species
Author: Rajapakse, Nimal
Degree Doctor of Philosophy - PhD
Program Chemistry
Copyright Date: 1990
Subject Keywords Oxidation; Oxidizing agents; Porphyrins; Ruthenium compounds; Organoruthenium compounds -- Synthesis; Porphyrins -- Synthesis
Abstract: The oxidation of three alkyl thioethers, phenol and 2-propanol by trans-dioxo ruthenium porphyrin species, and the synthesis, characterization and reactivity of several new ruthenium porphyrin complexes are described in this thesis. The trans-dioxo species Ru(Porp)(O)₂ [Porp= the dianions of 5,10,15,20-tetramesitylporphyrin (TMP) and 5,10,15,20-(2,6-dichlorophenyl)porphyrin (OCP)] selectively oxidize diethyl-, di-n-butyl- and decylmethyl- sulfides to the corresponding sulfoxides at room temperature. The reaction is first order in [Ru] and in [thioether]. The second order rate constants for the first O-atom transfer from the Ru(TMP) system are: 7.54xl0⁻³, 1.23xl0⁻² and 1.14x10-¹ M⁻¹ s⁻¹ respectively for the three thioethers at 20.0 °C. The activation parameters for the O-atom transfer process are also determined: for Et₂S, ∆H‡= 58.3 kJ mol⁻¹ and ∆S‡= -86 J K⁻¹ mol⁻¹; for nBu₂S, AH‡= 47.4 kJ mol⁻¹and ∆S‡= -120 J K⁻¹ mol⁻¹; for DecMeS, ∆H‡= 56.5 kJ mo⁻¹ and ∆S‡= -70 J K⁻¹ mol⁻¹. A second order rate constant of 7.23xl0⁻²M⁻¹s⁻¹ is measured at 20.0 °C for the oxidation of Et₂S by Ru(OCP)(O)₂. The intermediates Ru(TMP)(OSEt₂)₂, Ru(TMP)(OSEt₂)(OSEt₂) and the final product Ru(TMP)(0SEt₂)₂,where O and S refer to O- and S- bonded sulfoxide, are observed by ¹H nmr, and the last mentioned is isolated and characterized. A mechanism is proposed, based on electrophilic attack of the O=Ru=O moiety on :SR₂ to form bis-O-bonded species which subsequently isomerizes to bis-S-bonded species via mixed species. The Ru(TMP)(O)₂/Et₂S/O₂ system at room temperature is catalytic in complex, but produces only about 5 turnovers due to poisoning of the catalyst by the reaction product. The same system at >65 °C gives higher turnovers, but now porphyrin ligand degradation is observed, perhaps via oxidation by the O=Ru=O moiety. The Ru(OCP)(0)₂/Et₂S/O₂ system at 100 °C catalytically oxidizes Et₂S to Et₂SO and Et₂SO₂ (in ~ 4:1 ratio) and the porphyrin ligand does not undergo oxidative destruction. The Ru(TMP)(O)₂ species reacts with phenol via an observed intermediate Ru(TMP)(p-O(H)C₆H₄OH)₂ to form Ru(IV)(TMP)(OC₆H₄OH)₂, a paramagnetic (S=l) complex which is isolated and characterized. The oxidation reaction is first order in both [Ru] and [phenol] with a second order rate constant 6.90x10⁻² M⁻¹ s⁻¹at 20.0 °C. A mechanism based on electrophilic attack by the O=Ru=O moiety on the aryl ring followed by proton migration is proposed. This mechanism also explains the formation of some free para-benzoquinone and 1 equivalent of water per Ru. No ortho-benzoquinone is formed in the reaction. Preliminary ⁻H nmr studies reveal that 2-propanol is oxidized to acetone by Ru(TMP)(O)₂. A paramagnetic species (S= 1) was isolated as the only porphyrin product but not characterized. A range of novel ruthenium porphyrin complexes is also prepared. The reaction of acetylene with the four-coordinate Ru(TMP) species forms [Ru(TMP)]₂(u-C₂H₂), the first reported organometallic ruthenium porphyrin dimer. The complexes, Ru(TMP)(PhCCPh) and Ru(TMP)(PhCCH), the first π-bonded alkyne species in ruthenium porphyrin chemistry, are characterized in solution. The π-bonded alkene complexes Ru(TMP)(CH₂CH₂) OPrOH).(iPrOH) and Ru(TMP)(CH₂CH₂) are isolated and characterized, while the Ru(TMP)(cyclohexene) complex is characterized in situ. The Ru(TMP)(OSEt₂)₂ complex is isolated also by the reaction of Ru(TMP)(CH₃CN)₂with Et₂SO. The Ru(TMP)(L)₂ complexes, L= OSMe₂, OSnPr₂ and OSnBu₂ are also prepared via the above method and characterized. Some new Ru(OCP) complexes, (the monocarbonyl, the bis-acetonitrile and the dioxo- species) are also isolated and characterized.
URI: http://hdl.handle.net/2429/30767
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893