UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Biomimetic studies related to lignin degradation Cui, Futong

Abstract

Lignin is the second most abundant biopolymer on Earth. It is an amorphous, cross-linked, aromatic polymer composed of phenylpropanoid units. There has been an ever growing interest in the biodegradation of this complex polymer for the last 30 years. White-rot fungi have been found to be an important lignin degraders in the natural environment. With the discovery of two groups of hemoprotein enzymes, lignin peroxidases and manganese(II)-dependent peroxidases, from the lignin degrading culture of a white-rot fungus, Phanerochaete chrysosporium, rapid progress has been made in understanding the mechanism of lignin biodegradation. Synthetic metaUoporphyrins, the iron(III) and manganese(III) complexes of meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrin (TDCSPPFeCl and TDCSPPMnCl) and meso-tetra(2,6-dichloro-3-sulfonatophenyl)-B-octachloroporphyrin (Cl₁₆TSPPFeCl and Cl₁₆TSPPMnCl), were used in this study to mimic the functions of the "lignin degrading" enzymes. Factors affecting the catalytic activities of these biomimetic catalysts were studied. TDCSPPFeCl could closely mimic lignin peroxidase in the degradation of a number of lignin model compounds, including veratryl alcohol, B-l, B-O-4, B-5, 5-5' biphenyl, phenylpropane, and phenylpropene model compounds. The reactions catalyzed by TDCSPPFeCl include benzyl alcohol oxidation, C[formula omitted],-C[formula omitted] side chain cleavage, demethoxylation, aromatic ring cleavage, benzylic methylene hydroxylation, and C[formula omitted]-C[formula omitted] double bond hydroxylation (glycol formation). Novel solvent incorporated compounds isolated from the oxidation of veratryl alcohol give insights about the site of attack of substrate cation radical by solvent molecules. The isolation of a solvent incorporated product from the oxidation of a phenylpropene model compound suggests a cation radical mechanism for the oxidation of this lignin substructure. The formation of a number of direct aromatic ring cleavage products during the oxidation of some model compounds supports the previously proposed mechanism of aromatic ring cleavage. TDCSPPFeCl was also able to catalyze the oxidation of environmental pollutants such as pyrene and 2,4,6-trichlorophenol. Veratryl alcohol and manganese(II)-complexes have been suggested to function as redox mediators for lignin biodegradation. Evidence has been provided to demonstrate their mediating power during electrochemical and biomimetic degradation of lignin model compounds. In addition to the mechanistic information obtained, the successful oxidation of the model compounds suggests that metalloporphyrins can be important catalysts for the pulp and paper industry and for pollution control.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.