UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

An integrated model for force prediction in peripheral milling operations Zou, Guiping

Abstract

This thesis is primarily concerned with the modeling of peripheral milling operations and, in particular, with cutting force prediction. The models developed incorporate novel approaches to deal with the difficulties described regarding edge geometry and chip thickness. The major contributions are outlined below. The first step in the analysis has been the development of models for small chip thickness. The model for cutting with a large cutting edge radius or chamfer (compared to chip thickness) is formulated as an Upper Bound where the primary and secondary zones are defined from a previous slip-line field model. This has the advantage of providing both force and moment equilibrium together with a realistic rake face stress situation. The second major contribution of the thesis lies in the formulation of a new model of oblique cutting and the direct application of this to the milling process. The new upper bound model that incorporates force equilibrium parallel to the cutting edge is proposed for oblique cutting operations. The energy approach is framed in terms of the normal shear angle and two fundamental variables that characterize the energy requirements of the oblique cutting process. Since the process of surface generation requires the analysis of entry and exit phenomenon, the attention has been directed towards simple slip-line field models of ploughing with single and double cutting edges. The analysis includes the influence of ploughing length on the ploughing/cutting transition. Finally the thesis presents the modeling of milling forces using the oblique cutting method as outlined and adding to the ploughing forces calculated from the new model. In addition, the model incorporates suitable material constitutive equations so that the influence of strain, strain rate, and temperature effects can be accounted for as chip thickness varies. The Upper Bound model at this stage is also able to incorporate the influence of surface slope and the kinematics of the process. The models developed have been tested with a variety of end mills on several work materials. These tests clearly demonstrate the need to account for the secondary factors not normally included in the modeling process.

Item Media

Item Citations and Data

Rights

Attribution 3.0 Unported