Go to  Advanced Search

Please note that starting Tuesday, October 13th we will be making a number of modifications to integrate cIRcle into the new UBC Library Open Collections service. This may result in some temporary outages next week. Please keep this in mind when planning your work schedule. Apologies for any inconvenience.

A mathematical model for cement kilns

Show full item record

Files in this item

Files Size Format Description   View
ubc_2007-0071a.pdf 12.59Mb Adobe Portable Document Format   View/Open
Title: A mathematical model for cement kilns
Author: Darabi, Pirooz
Degree: Master of Applied Science - MASc
Program: Mechanical Engineering
Copyright Date: 2007
Issue Date: 2011-03-11
Publisher University of British Columbia
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Abstract: Rotary kilns have numerous industrial applications including cement production. Frequent operational problems such as low thermal efficiency, refractory failure, and poor product quality have prompted extensive efforts to improve and optimize their design. Mathematical modeling and Computational Fluid Dynamics constitute effective tools recently used for these purposes. A cement kiln consists of three major parts: the hot flow, the bed, and the wall. A CFD code which had the capability of simulating the hot gas was developed further to simulate the kiln. In the present work, two 1-D mathematical models are proposed and implemented in the existing CFD code. The first model consists of the steady-state solution for the material and temperature evolution within the bed. The second one simulates tire combustion in the kiln. The tire burning model assumes that tire combustion occurs in two major successive steps, devolatization and char combustion. For the devolatization model, external heat and mass transfer, three parallel reactions, and enthalpy effects are considered the dominant phenomena. The char combustion model considers the enthalpy effect and the external mass transfer. With the aid of the developed model, full-scale industrial cement kilns under steady-state and realistic operational conditions are simulated. In addition, cement kilns with combustion of full scrap tires in the middle of them are mathematically modeled. The limits and feasibility of tire combustion are further explored by running numerical simulations with different tire flow rates and different injector locations. The flow field, temperature distribution and species distribution are presented. Analysis of the results indicates that, with the help of the proposed model, a better understanding of the important processes within cement kilns can be obtained. The model can be used for addressing operational problems and optimizing designs. It is also concluded that successful firing of tires can lead to a cheaper, longer lasting, and less polluting kiln.
Affiliation: Applied Science, Faculty of
URI: http://hdl.handle.net/2429/32346
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893