UBC Faculty Research and Publications

Evaluation of Probabilistic Medium-Range Temperature Forecasts from the North American Ensemble Forecast System. McCollor, Doug; Stull, Roland B.

Abstract

Ensemble temperature forecasts from the North American Ensemble Forecast System were assessed for quality against observations for 10 cities in western North America, for a 7-month period beginning in February 2007. Medium-range probabilistic temperature forecasts can provide information for those economic sectors exposed to temperature-related business risk, such as agriculture, energy, transportation, and retail sales. The raw ensemble forecasts were postprocessed, incorporating a 14-day moving-average forecast–observation difference, for each ensemble member. This postprocessing reduced the mean error in the sample to 0.68C or less. It is important to note that the NorthAmerican Ensemble Forecast Systemavailable to the public provides bias-corrected maximum and minimum temperature forecasts. Root-mean-square-error and Pearson correlation skill scores, applied to the ensemble average forecast, indicate positive, but diminishing, forecast skill (compared to climatology) from 1 to 9 days into the future. The probabilistic forecasts were evaluated using the continuous ranked probability skill score, the relative operating characteristics skill score, and a value assessment incorporating cost–loss determination. The full suite of ensemble members provided skillful forecasts 10–12 days into the future. A rank histogram analysis was performed to test ensemble spread relative to the observations. Forecasts are underdispersive early in the forecast period, for forecast days 1 and 2. Dispersion improves rapidly but remains somewhat underdispersive through forecast day 6. The forecasts show little or no dispersion beyond forecast day 6. A new skill versus spread diagram is presented that shows the trade-off between higher skill but low spread early in the forecast period and lower skill but better spread later in the forecast period. Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International