Go to  Advanced Search

Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics.

Show full item record

Files in this item

Files Size Format Description   View
Bertram_2011_CPPC_c0cp02682d.pdf 945.5Kb Adobe Portable Document Format   View/Open
 
Title: Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics.
Author: Xiao, Song; Bertram, Allan K.
Issue Date: 2011-02-03
Publicly Available in cIRcle 2011-04-18
Publisher Royal Society of Chemistry
Citation: Xiao, Song, Bertram, Allan K. 2011. Reactive uptake kinetics of NO3 on multicomponent and multiphase organic mixtures containing unsaturated and saturated organics. Physical Chemistry Chemical Physics 13(14) 6628-663 dx.doi.org/10.1039/C0CP02682D
Abstract: We investigated the reactive uptake of NO3 (an important night-time oxidant in the atmosphere) on binary mixtures containing an unsaturated organic (methyl oleate) and saturated molecules (diethyl sebacate, dioctyl sebacate, and squalane) which we call matrix molecules. These studies were carried out to better understand the reactivity of unsaturated organics in multicomponent and multiphase atmospheric particles. For liquid binary mixtures the reactivity of methyl oleate depended on the matrix molecule. Assuming a bulk reaction, varied by a factor of 2.7, and assuming a surface reaction HSmatrixKSmatrixkSoleate varied by a factor of 3.6, where and HSmatrixKSmatrixkSoleate are constants extracted from the data using the resistor model. For solid–liquid mixtures, the reactive uptake coefficient depended on exposure time: the uptake decreased by a factor of 10 after exposure to NO3 for approximately 90 min. By assuming either a bulk or surface reaction, the atmospheric lifetime of methyl oleate in different matrices was estimated for moderately polluted atmospheric conditions. For all liquid mixtures, the lifetime was in the order of a few minutes (with an upper limit of 35 min). These lifetimes can be used as lower limits to the lifetimes in semi-solid mixtures. Our studies emphasize that the lifetime of unsaturated organics (similar to methyl oleate) is likely short if the particle matrix is in a liquid state.
Affiliation: Chemistry, Dept of
URI: http://hdl.handle.net/2429/33767
Peer Review Status: Reviewed
Scholarly Level: Faculty

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893