Go to  Advanced Search

Dynamics of advection-driven upwelling over a shelf break submarine canyon.

Show full item record

Files in this item

Files Size Format Description   View
Allen_AGU_2009JC005731.pdf 1.484Mb Adobe Portable Document Format   View/Open
Title: Dynamics of advection-driven upwelling over a shelf break submarine canyon.
Author: Allen, Susan E.; Hickey, B. M.
Issue Date: 2010-08
Publicly Available in cIRcle 2011-05-13
Publisher American Geophysical Union
Citation: Allen, Susan E., Hickey, B. M. 2010. Dynamics of advection-driven upwelling over a shelf break submarine canyon. Journal of Geophysical Research 115 C08018 dx.doi.org/10.1029/2009JC005731
Abstract: The response over a submarine canyon to a several day upwelling event can be separated into three phases: an initial transient response; a later, much longer, “steady” advection-driven response; and a final relaxation phase. For the advection-driven phase over realistically steep, deep, and narrow canyons with near-uniform flow and stratification at rim depth, we have derived scale estimates for four key quantities. Observations from 5 real-world canyon studies and 3 laboratory studies are used to validate the scaling and estimate the scalar constant for each scale. Based on 4 geometric parameters of the canyon, the background stratification, the Coriolis parameter, and the incoming current, we can estimate (1) the depth of upwelling in the canyon to within 15 m, (2) the deep vorticity to within 15%, and (3) the presence/absence of a rim depth eddy can be determined. Based on laboratory data, (4) the total upwelling flux can also be estimated. The scaling analysis shows the importance of a Rossby number based on the radius of curvature of isobaths at the upstream mouth of the canyon. This Rossby number determines the ability of the flow to cross the canyon isobaths and generate the pressure gradient that drives upwelling in the canyon. Other important scales are a Rossby number based on the length of the canyon which measures the ability of the flow to lift isopycnals and a Burger number based on the width of the canyon that determines the likelihood of an eddy at rim depth. Generally, long canyons with sharply turning upstream isobaths, strong incoming flow, small Coriolis parameter, and weak stratification have the strongest upwelling response. An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.
Affiliation: Science, Faculty ofEarth and Ocean Sciences, Department of
URI: http://hdl.handle.net/2429/34549
Peer Review Status: Reviewed
Scholarly Level: Faculty

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893