Go to  Advanced Search

Please note that cIRcle is currently being upgraded to DSpace v5.1. The upgrade means that the cIRcle service will *not* be accepting new submissions from 5:00 PM on September 1, 2015 until 5:00 PM on September 4, 2015. All cIRcle material will still be accessible during this period. Apologies for any inconvenience.

Rapid Synthesis of Ligand-Based Radicals from Chromium(II) Compounds

Show full item record

Files in this item

Files Size Format Description   View
Rapid Synthesis of Ligand-Based Radicals from Chromium(II) Compounds.pdf 905.7Kb Adobe Portable Document Format   View/Open
Title: Rapid Synthesis of Ligand-Based Radicals from Chromium(II) Compounds
Author: Desnoyer, Addison
Subject Keywords coordination;chemistry;radicals;ligands;synthesis
Issue Date: 2011-04
Publicly Available in cIRcle 2011-06-06
Series/Report no. University of British Columbia, Okanagan campus, Chemistry Undergraduate Honours Essays
Abstract: The existence of metal complexes that contain ligand-based radicals has been known for years, yet has mainly been regarded as a spectroscopic oddity. More recently, the effects of these redox non-innocent ligands on the reactivities of first-row transition metals during catalytic processes has been examined. In an effort to study the reactivities of some of these complexes, a series of octahedral Cr(III) complexes with both redox innocent and non-innocent ligands was synthesized. The square planar Cr(II) compound Cr(DPM)2 was found to be an excellent single electron reductant for a variety of neutral diimines to give the corresponding octahedral Cr(DPM)2(LX•) complexes. In addition, the use of a variety of Cr(II) compounds as single electron reductant prior to protonolysis of the resulting Cr(bpy) complex with a variety of ligands of the form H(R,R’-acac) was found to give the corresponding Cr(R,R’-acac)2(bpy•) complex, allowing for greater tuning of the ancillary ligands. The radical complexes were found to be intensely coloured and air sensitive, and were primarily characterized by UV/vis spectrophotometry. In addition, the complex Cr(DPM)2(bpy•) was found to rapidly and quantitatively react with trityl bromide via an outer-sphere single electron transfer mechanism, generating the trityl radical and the cationic Cr(DPM)2(bpy) complex.
Affiliation: Irving K. Barber School of Arts and SciencesChemistry
URI: http://hdl.handle.net/2429/35148
Peer Review Status: Unreviewed
Scholarly Level: Undergraduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893