UBC Faculty Research and Publications

Aerodynamic properties of urban areas derived from analysis of surface form. Grimmond, C. S. B.; Oke, Timothy R.

Abstract

Several methods to determine the aerodynamic characteristics of a site through analysis of its surface form (morphometry) are considered in relation to cities. The measures discussed include zero-plane displacement length (zd), roughness length (z0), depth of the roughness sublayer, and aerodynamic conductance. A sensitivity analysis is conducted on seven formulas to estimate zd and nine to estimate z0, covering a wide range of probable urban roughness densities. Geographic information systems developed for 11 sites in 7 North American cities are used to characterize their morphometry—the height, shape, three-dimensional area, and spatial distribution of their roughness elements (buildings and trees). Most of the sites are in residential suburbs, but one is industrial and two are near city centers. This descriptive survey of urban geometric form is used, together with the morphometric formulas, to derive the apparent aerodynamic characteristics of the sites. The resulting estimates of zd and z0 are compared with values obtained from analysis of wind and turbulence observations. The latter are obtained from a survey of approximately 60 field studies and 14 laboratory studies of real and scale model cities. Despite the comprehensive nature of the survey, very few studies are found to be acceptable and their scatter is large, hence they do not provide a standard against which to test the morphometric algorithms. Further, the data show only weak relations between measured zd and z0 and roughness density. The relative merits of morphometric and wind-based estimates of aerodynamic parameters are discussed. Recommendations are made concerning the choice of method to estimate zd and z0 in urban areas and their most likely magnitude. Copyright 1999 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International