Go to  Advanced Search

Lateral inhibition and the area operator in visual pattern processing

Show full item record

Files in this item

Files Size Format Description   View
UBC_1969_A1 C66.pdf 8.663Mb Adobe Portable Document Format   View/Open
Title: Lateral inhibition and the area operator in visual pattern processing
Author: Connor, Denis John
Degree: Doctor of Philosophy - PhD
Program: Electrical and Computer Engineering
Copyright Date: 1969
Subject Keywords Vision -- Mathematical models
Issue Date: 2011-07-16
Publisher University of British Columbia
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Abstract: The static interaction of the receptor nerves in the lateral eye of the horsesoe crab, Limulus, is called lateral inhibition. It is described by the Hartline equations. A simulator has been built to study lateral inhibition with a view to applying it in a pre-processor for a visual pattern recognition system. The activity in a lateral inhibitory receptor network is maximal in regions of non-uniform illumination. This enhancement of intensity contours has been extensively studied for the case of black and white patterns. It is shown that the level of activity near a black-white boundary provides a measure of its local geometric properites. However, the level of activity is dependent on the boundary orientation. A number of methods for reducing this orientation dependence are explored. The activity in a lateral inhibitory network adjacent to a boundary can be modelled by an area operator. It is shown that the value of this operator along an intensity boundary provides a description of the boundary that is related to its intrinsic description — curvature as a function of arc length. Since the operator is maximal on an intensity boundary, this description has been called the ridge function for the boundary. A ridge function can also be obtained using a lateral inhibitory, network. The properties of this function are discussed. It is shown how ridge functions might be incorporated into a pattern recognition algorithm. A novel method for detecting the bilateral and rotational symmetries in a pattern is described.
Affiliation: Applied Science, Faculty of
URI: http://hdl.handle.net/2429/36053
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893