UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Downstream environmental impacts of reservoir high outflows - with a focus on fisheries Naghibi, Ali

Abstract

Extreme floods pose a significant risk to communities and environments in river systems throughout the world. In many cases, sensitivity of this issue is heightened for regulated rivers where downstream impacts of reservoirs are directly affected by operational decisions. Therefore, many North American jurisdictions require asset owners to assess downstream effects. Loss of life and economic impacts have been widely addressed in the literature. Nevertheless, immediate and long-term environmental impacts of such extreme events have not been holistically addressed. This work develops a framework for quantitatively estimating immediate and long-term fisheries impacts of extreme floods. The framework may also be generalized to other environmental systems. Several models are developed to support it. The immediate effects of extreme events are assessed with three models. These include: a probabilistic individual-based model that employs the results of a transient hydrodynamic model to estimate fish loss during extreme floods; a sampling simulation model that utilizes the results of a transient morphodynamic model and derives a probabilistic relationship between egg loss and flood intensity; and a habitat change estimation model that evaluates the available habitat difference before and after extreme events, given the results of hydrodynamic and morphodynamic models. A fish population recovery model is also developed and employed to estimate long-term impacts of extreme events, given the results of the immediate impact estimation models. An approach for estimating a number of risk-based performance measures that characterize the impacts and recovery from extreme events is also developed. These performance measures include existing formulations for vulnerability, engineering resilience, and ecological resilience, as well as a new measure which is introduced in this work, as vulnerability divided by engineering resilience. This new performance measure is designed to characterize both short- and long-term performance of the environmental system. Planning, design, and real-time operation of reservoirs, participatory water use planning, and licensing and relicensing decisions for proposed and existing water resource projects are cases in which such estimates may be useful. Applicability of this framework is demonstrated for the case study of the Lower Campbell River in British Columbia, Canada.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International