UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

A phase-domain induction motor model for transient studies Myers, Thornley O.A.O.

Abstract

The research programme presented in this thesis terminates the first phase in the development of a new and accurate model for transient analysis of induction motors in the phase domain. Modelling the induction machine variables in the phase domain required a new model which when tested in similar conditions with existing models would give comparable results in both transient and steady-state studies. This new model has been developed, and essentially it differs from traditional models in that it works directly with the machine variables such as currents and voltages directly in the phase domain instead of the dqO coordinates. This required the solution of a series of first order differential equations with time-varying coefficients. The solution method is based on the discretization of the differential equations with the use of the trapezoidal rule of integration. The new model has been used to develop a computer program for transient and steady-state analysis of induction motors. The new phase domain transient model (PDTM) requires a number of circuit parameters of the induction motor that are not normally supplied by the manufacturer. Consequently, modifications were performed on a computer program that calculates the parameters of the standard 60-Hz equivalent circuit from starting and steady-state characteristics of the motor to obtain the circuit parameters of the PDTM. The results from the PDTM compare favourably tested with those obtained from the electromagnetic transient program (EMTP) which uses conventional dqO coordinates to model the induction motor.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.