UBC Faculty Research and Publications

Phantom validation for ultrasound to statistical shape model registration of human pelvis. Ghanavati, Sahar; Mousavi, Parvin; Fichtinger, Gabor; Abolmaesumi, Purang

Abstract

Total Hip Replacement (THR) has become a common surgical procedure in recent years, as a result of increasing aging population with osteoarthritis of the hip joint. Localization of the pelvic anatomical coordinate system (PaCS) is a critical step in accurate placement of the femur prosthesis in the acetabulum in THR. Intra-operative ultrasound (US) imaging can provide a radiation-free navigation system for localization of the PaCS. However, US images are noisy and cannot provide any anatomical information beneath the bone surface due to the total reflection of US beam at the bone-soft tissue interface. A solution to this problem is to fuse intra-operative US with pre-operative imaging or a statistical shape model (SSM) of the pelvis. Here, we propose a multi-slice to volume intensity-based registration of the pelvic SSM to a sparse set of 2D US images in order to localize the PaCS in the US. In this registration technique, a set of 2D slices are extracted from a pelvic SSM using the approximate location and orientation of their corresponding 2D US images. During the registration, the comparison between the SSM slices and the US images is made using an ultrasound simulation technique and a correlation-based similarity metric. We demonstrate the feasibility of our proposed approach in localizing the PaCS on five patient-based phantoms. These results indicate the necessity of including pubic symphysis landmarks in the 2D US slices in order to have a precise estimation of the PaCS.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International