Go to  Advanced Search

Physics based turning process simulation

Show full item record

Files in this item

Files Size Format Description   View
ubc_2011_fall_gencoglu_ahmet.pdf 6.895Mb Adobe Portable Document Format   View/Open
Title: Physics based turning process simulation
Author: Gencoglu, Ahmet
Degree Master of Applied Science - MASc
Program Mechanical Engineering
Copyright Date: 2011
Publicly Available in cIRcle 2011-08-24
Abstract: The manufacturing planning of parts is currently based on experience and physical test trials. The parts are modeled, and Numerically Controlled (NC) tool paths are generated in Computer Aided Manufacturing (CAM) environment. The NC programs are physically tested, and if the process faults are found, the NC program is re-generated in the CAM environment. The objective of this thesis is to develop Virtual Turning System that predicts the part machining process ahead of costly physical trials. Tool–workpiece engagement geometry is calculated along the tool path by a proposed polycurve method. The part geometry is imported as a stereolithography (STL) model from the CAM system, and the cross section around the turning axis is reconstructed. The tool and part cross sections are modeled by polycurves, which are constructed by series of arcs and lines. The tool–part geometries are intersected using boolean operations to obtain the engagement conditions. The turning process is modeled by predicting the chip area and equivalent chord angle. The process forces are modeled proportional to the material dependent cutting force coefficients, depth of cut and equivalent chord length that depends on the nose radius and approach angle of the tool. The chatter stability of the process is examined using Nyquist criterion at each tool–workpiece engagement station along the path. The virtual turning simulation simulates the forces and detects the chatter stability, and adjusts the feeds at each tool-part engagement station. The physical turning of parts with arbitrary geometry can be simulated, and cutting conditions that leads to most optimal machining operation is automatically determined without violating the limits of the machine tool and part.
URI: http://hdl.handle.net/2429/36886
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893