Go to
Advanced Search

- cIRcle Home
- Graduate Theses and Dissertations
- Retrospective Theses and Dissertations, 1919-2007
- View Item

Files | Size | Format | Description | View | |
---|---|---|---|---|---|

UBC_1966_A1 S8.pdf | 7.613Mb | Adobe Portable Document Format |
View/ |

Title: | Algebraic properties of certain rings of continuous functions |

Author: | Su, Li Pi |

Degree: | Doctor of Philosophy - PhD |

Program: | Mathematics |

Copyright Date: | 1966 |

Subject Keywords | Functions, Continuous;Rings (Algebra) |

Issue Date: | 2011-09-09 |

Publisher | University of British Columbia |

Series/Report no. | UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/] |

Abstract: | We study the relations between algebraic properties of certain rings of functions and topological properties of the spaces on which the functions are defined. We begin by considering the relation between ideals of rings of functions and z-filters. Let [fomula omitted] be the ring of all m-times differentiable functions on a [formula omitted] differentiable n-manifold X , [formula omitted] the ring of all Lc-functions on a metric space X , and [formula omitted] the ring of all analytic functions on a subset X of the complex plane. It is proved that two m-(resp. Lc-) realcompact spaces X and Y are [formula omitted] diffeomorphic (resp. Lc-homeomorphic) iff [formula omitted] are ring isomorphic. Again if X and Y are m-(resp. Lc-) realcompact spaces, then X can be [formula omitted] (resp.Lc-) embedded as an open [resp. closed] subset in Y iff [formula omitted] homomorphic image of [formula omitted]. The subrings of [formula omitted] which determine the [formula omitted] diffeomorphism (resp. Lc-homeomorphism) of the spaces are studied. We also establish a representation for a transformation, more general than homomorphism, from a ring of [formula omitted] differentiable functions to another ring of [formula omitted] differentiable functions. Finally, we show that, for arbitrary subsets X and Y of the complex plane, if there is a ring isomorphism from [formula omitted] which is the identity on the constant functions, then X and Y are conformally equivalent. |

Affiliation: | Science, Faculty of |

URI: | http://hdl.handle.net/2429/37206 |

Scholarly Level: | Graduate |

UBC Library | Hours | Site Map | Contact Us

UBC Library

1961 East Mall

Vancouver, B.C.

Canada V6T 1Z1

Tel: 604-822-6375

Fax: 604-822-3893