UBC Faculty Research and Publications

Lunar Liquid Mirror Telescope (LLMT) for deep-field infrared observations near the lunar pole. Hickson, Paul

Abstract

We have studied the feasibility and scientific potential of a 20 - 100 m aperture astronomical telescope at the lunar pole, with its primary mirror made of spinning liquid at less than 100K. Such a telescope, equipped with imaging and multiplexed spectroscopic instruments for a deep infrared survey, would be revolutionary in its power to study the distant universe, including the formation of the first stars and their assembly into galaxies. The LLMT could be used to follow up discoveries made with the 6 m James Webb Space Telescope, with more detailed images and spectroscopic studies, as well as to detect objects 100 times fainter, such as the first, high-red shift stars in the early universe. Our preliminary analysis based on SMART-1 AMIE images shows ridges and crater rims within 0.5° of the North Pole are illuminated for at least some sun angles during lunar winter. Locations near these points may prove to be ideal for the LLMT. Lunar dust deposited on the optics or in a thin atmosphere could be problematic. An in-situ site survey appears necessary to resolve the dust questions. Copyright 2006 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International