Go to  Advanced Search

Single-image wavefront curvature sensing.

Show full item record

Files in this item

Files Size Format Description   View
Hickson_SPIE_2201_549.pdf 162.7Kb Adobe Portable Document Format   View/Open
 
Title: Single-image wavefront curvature sensing.
Author: Hickson, Paul; Burley, Gregory S.
Issue Date: 1994
Publicly Available in cIRcle 2011-09-20
Publisher Society of Photo-Optical Instrumentation Engineers
Citation: Hickson, Paul; Burley, Gregory S. Single-image wavefront curvature sensing. Adaptive Optics in Astronomy, edited by Mark A. Ealey, Fritz Merkle. Proceedings of SPIE Volume 2201, 549, 1994. http://dx.doi.org/10.1117/12.176090
Abstract: A single defocused star image contains sufficient information to uniquely determine the spatial phase fluctuations of the incident wavefront. A sensor which responds to the intensity distribution in the image produces signals proportional to the wavefront curvature within the pupil and the radial slope at the pupil boundary. Unlike Roddier's differential curvature sensing technique, a single-image sensor does not cancel intensity fluctuations due to atmospheric scintillation. However, it has been shown that at typical astronomical sites the scintillation signal is negligibly small. A single-image curvature sensor can theoretically achieve a signal-to-noise ratio of order Q approximately equals r20/(lambda) z0 where r0 is Fried's correlation length, (lambda) is the wavelength, and z0 is the root-mean-square distance through the atmosphere, weighted by the refractive index structure constant C2n. This is more than adequate for AO systems whenever D/r0 <EQ Q6/5. Such a sensor can be very simple, optically and mechanically, and has lower detector read noise than a comparable differential system. The concept has been tested in the laboratory by introducing, and detecting, spherical aberration in a simple optical system. Copyright 1994 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Affiliation: Physics and Astronomy, Dept of
URI: http://hdl.handle.net/2429/37492
Peer Review Status: Reviewed
Scholarly Level: Faculty

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893