UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Matrix analysis of steady state, multiconductor, distributed parameter transmission systems Dowdeswell, Ian J.D.

Abstract

Problems concerning transmission lines have been solved in the past by treating the line in terms of lumped parameters. Pioneering work was done by L. V. Bewley and S. Hayashi in the application of matrix theory to solve polyphase multiconductor distributed parameter transmission system problems. The availability of digital computers and the increasing complexity of power systems has renewed the interest in this field. With this in mind, a systematic procedure for handling complex transmission systems was evolved. Underlying the procedure is the significant concept of a complete system which defines how the parametric inductance, capacitance, leakance and resistance matrices must be formed and used. Also of significance is the use of connection matrices for handling transpositions and bonding, together with development of the manipulation of these matrices and the complex (Z) and (T) matrices. In the numerical procedure, methods were found to transform complex matrices into real matrices of twice the order and to determine the coefficients in the general solution systematically. The procedure was used to deal with phase asymmetry and mixed end boundary conditions.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.