Go to  Advanced Search

Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions.

Show full item record

Files in this item

Files Size Format Description   View
Stull_AMS_2011_2011MWR3653.pdf 3.561Mb Adobe Portable Document Format   View/Open
 
Title: Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions.
Author: Nipen, Thomas; Stull, Roland B.
Issue Date: 2011
Publicly Available in cIRcle 2011-11-22
Publisher American Meteorological Society
Citation: Delle Monache, Luca; Nipen, Thomas; Liu, Yubao; Roux, Gregory; Stull, Roland. 2011. Kalman Filter and Analog Schemes to Postprocess Numerical Weather Predictions. Monthly Weather Review, 139 (11) 3554-3570, http://dx.doi.org/10.1175/2011MWR3653.1
Abstract: Two new postprocessing methods are proposed to reduce numerical weather prediction’s systematic and random errors. The first method consists of running a postprocessing algorithm inspired by the Kalman filter (KF) through an ordered set of analog forecasts rather than a sequence of forecasts in time (ANKF). The analog of a forecast for a given location and time is defined as a past prediction that matches selected features of the current forecast. The second method is the weighted average of the observations that verified when the 10 best analogs were valid (AN). ANKF and AN are tested for 10-m wind speed predictions from the Weather Research and Forecasting (WRF) model, with observations from 400 surface stations over the western United States for a 6-month period. Both AN and ANKF predict drastic changes in forecast error (e.g., associated with rapid weather regime changes), a feature lacking in KF and a 7-day running-mean correction (7-Day). The AN almost eliminates the bias of the raw prediction (Raw), while ANKF drastically reduces it with values slightly worse than KF. Both analog-based methods are also able to reduce random errors, therefore improving the predictive skill of Raw. The AN is consistently the best, with average improvements of 10%, 20%, 25%, and 35% with respect to ANKF, KF, 7-Day, and Raw, as measured by centered root-mean-square error, and of 5%, 20%, 25%, and 40%, as measured by rank correlation. Moreover, being a prediction based solely on observations, AN results in an efficient downscaling procedure that eliminates representativeness discrepancies between observations and predictions. Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyright@ametsoc.org.
Affiliation: Earth and Ocean Sciences, Dept. of (EOS), Dept of
URI: http://hdl.handle.net/2429/39210
Peer Review Status: Reviewed
Scholarly Level: Faculty

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893