UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Observation and simulation of atmospheric carbon dioxide in Vancouver Reid, Kenneth Howard

Abstract

Climate change expected from increasing atmospheric CO₂ concentrations has been studied widely (IPCC, 1990). Further, it is recognized that cities are a major source of anthropogenic CO₂. However, few studies of CO₂ concentrations in, or near, cities have been conducted. A LI-COR infrared gas analyzer was operated at the Sunset Tower in a suburban region of Vancouver during different time periods in 1993 and 1994. Sampling revealed important information on seasonal and diurnal variations. The observed summertime concentrations show a clear diurnal signal around the expected upwind background concentration, and are described by a late afternoon minimum, and overnight maximum. The afternoon CO₂ minimum is attributed to the strength of biospheric photosynthesis and strong mixing of local anthropogenic sources within a large mixed layer. Poor nighttime mixing, lower mixed depths, and biospheric respiration account for the observed nighttime maximum, often more than 80 ppmv greater than the background concentration. A simple numerical multiple-box transport model was developed to simulate the observed diurnal pattern of CO₂ concentration at the suburban site. CO₂ emissions inventories for important mobile sources, stationary sources, and biospheric sources and sinks are calculated as input to the model for upwind fetch areas. Other CO₂ inputs include advection, entrainment from above the mixed layer and determination of the mixed layer depth. Results of both observations and modelling show large diurnal variation in CO₂ concentrations, and the importance of boundary layer structure (as defined by the mixed layer) on concentrations at a specific location. In terms of CO₂, the role of the city is placed in it global context.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.