Go to  Advanced Search

From displacement to mixing in a slightly inclined duct

Show full item record

Files in this item

Files Size Format Description   View
ubc_2012_spring_taghavi_seyed.pdf 16.58Mb Adobe Portable Document Format   View/Open
Title: From displacement to mixing in a slightly inclined duct
Author: Taghavi, Seyed Mohammad
Degree: Doctor of Philosophy - PhD
Program: Chemical and Biological Engineering
Copyright Date: 2011
Issue Date: 2011-11-24
Publisher University of British Columbia
Abstract: This thesis studies buoyant displacement flows with two miscible fluids in pipes and 2D channels that are inclined at angles (β) close to horizontal. Detailed experimental, analytical and computational approaches are employed in an integrated fashion. The displacements are at low Atwood numbers and high Péclet numbers, so that miscibility effects are mostly observable after instability and via dispersive mixing. For iso-viscous Newtonian displacements, studying the front velocity variation as a function of the imposed flow velocity allows us to identify 3 distinct flow regimes: an exchange flow dominated regime characterized by Kelvin-Helmholtz-like instabilities, a laminarised viscous displacement regime with the front velocity linearly increasing with the mean imposed flow rate, and a fully mixed displacement regime. The transition between the first and the second regimes is found to be marked by a stationary layer of displaced fluid. In the stationary layer the displaced fluid moves in counter-current motion with zero net volumetric flux. Different lubrication/thin-film models have been used to predict the flow behaviour. We also succeed in characterising displacements as viscous or inertial, according to the absence/presence of interfacial instability and mixing. This dual characterisation allows us to define 5-6 distinct flow regimes, which we show collapse onto regions in the two-dimensional (Fr, Re cosβ/Fr)-plane. Here Fr is the densimetric Froude number and Re the Reynolds number. In each regime we have been able to offer a leading order approximation to the leading front velocity. A weighted residual method has also been used to include the effect of inertia within the lubrication modelling approach, which allows us to predict long-wave instabilities. We have extended the study to include the effects of moderate viscosity ratio and shear-thinning fluids. We see many qualitative similarities with the iso-viscous studies. Predictive models are proposed (and compared with experiments and simulations) for the viscous and inertial regimes. Having a significant yield stress in the displaced fluid leads to completely new phenomena. We identify two distinct flow regimes: a central-type displacement regime and a slump-type regime for higher density differences. In both regimes, the displaced fluid can remain completely static in residual wall layers.
Affiliation: Applied Science, Faculty of
URI: http://hdl.handle.net/2429/39272
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893