Go to  Advanced Search

Waves in inhomogeneous isotropic media

Show full item record

Files in this item

Files Size Format Description   View
UBC_1961_A7 J2 W2.pdf 3.870Mb Adobe Portable Document Format   View/Open
Title: Waves in inhomogeneous isotropic media
Author: James, Christopher Robert
Degree Master of Applied Science - MASc
Program Electrical and Computer Engineering
Copyright Date: 1961
Abstract: For the case of a lossless medium containing no free charges and possessing a continuous and sufficiently differentiable spatially dependent permeability and permittivity, two vectorial differential wave equations, one for the electric and one for the magnetic field, are derived through the use of Maxwell's equations. From these two equations necessary conditions for E- and H-modes to exist in a waveguide are established,. The field equations for the case of constant permeability and z-dependent permittivity as well as the interchanged case are investigated. A test is developed which, if met, assures that the solutions are oscillatory for the ordinary differential equations containing the z-dependent part of the wave function. For the dielectric loaded periodic structure the theory for inhomogeneous isotropic media is used to determine the restrictions on the field components which are necessary before E-modes can exist and to find the E-mode wave solutions for the solid disc case when the dielectric regions are matched into the air regions. An investigation is carried out into the behaviour of plane waves in a medium with the permeability constant and the permittivity varying in the direction of propagation.
URI: http://hdl.handle.net/2429/39365
Series/Report no. UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
Scholarly Level: Graduate

This item appears in the following Collection(s)

Show full item record

All items in cIRcle are protected by copyright, with all rights reserved.

UBC Library
1961 East Mall
Vancouver, B.C.
Canada V6T 1Z1
Tel: 604-822-6375
Fax: 604-822-3893